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Command and Control of Teams of Autonomous Units 

Douglas S. Lange 

Phillip Verbanscics 

Robert Gutzwiller 

John Reeder 

Space and Naval Warfare Systems Center – Pacific 

Abstract. Command and Control (C2) has always been the practice of directing teams of 

autonomous units. These units have included individual soldiers, aircraft directed by a 

pilot, and ships maneuvered and fought by the combined intelligence of an entire crew. It 

is into this already populated universe that we are now working to add autonomous 

unmanned systems (AUS). In this paper, we explore the C2 of teams of autonomous units 

that include human, human populated, and uninhabited systems. Beyond the simple one-

for-one substitution of a manned vehicle by an unmanned vehicle, we consider the reality 

that AUS share information differently among themselves and their inhabited 

counterparts. Similarly, humans and human populated units will provide information to 

their commanders in a different fashion than machines will, because each are uniquely 

capable of different observations and understandings. This paper also describes the sparse 

supervisory control that must be exercised over highly autonomous units, and considers 

what it means for a commander to supervise AUS that employ machine learning and 

cooperative autonomy. 

The Boundary of Command 

and Control and Autonomy 

Autonomous unmanned systems (AUS) 

development is based on the idea of 

having a system operate without 

continuous human intervention. This 

autonomy is not the same as avoiding all 

human direction. Human commanders 

decide when to deploy systems, when to 

end their deployment, and for those 

systems capable of making changes to 

their plans while deployed, commanders 

may change their tasks in some way. 

Teams of heterogeneous autonomous 

units will require command and control, 

just as they always have. That the units 

are now unmanned does not necessarily 

change that.  

Controlling such a complex team 

requires several critical capabilities. 

First, the goals and constraints for the 

AUS team must be communicated to the 

various decision making nodes. These 

nodes may include all of the AUS, as 

they all may possess sufficient 

autonomous capability to decide how to 

act under many situations given the 

goals. A central controller, or more 

generally several distributed controllers, 

must have confidence (particularly if 

human operated) that the goals and 

constraints have been received and 

correctly interpreted by the autonomous 

units. Second, the control units must 

have sufficient situational awareness of 

the environment and the behaviors of the 

team members in order to decide if 

changes to orders are required. The 

control must have the ability to 

determine if any error conditions are 
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present and must be able to distinguish 

between aberrant behavior and what may 

be a plausible but unpredicted solution. 

Finally, team strategies must be selected 

to accomplish goals, and these strategies 

may need to be altered as the 

environment changes.  

This paper explores the control of 

heterogeneous autonomous systems. In 

particular we look at the requirement for 

human controllers to influence the 

operation of these systems as well as 

addressing the need for autonomic 

control in situations where time 

constraints do not allow human decision 

making. This combination of 

requirements poses interesting demands 

on how AUS are constructed and how 

they incorporate adaptation. 

Control of Complex Systems 

The control exercised by a military 

commander over forces is described as 

“…guiding the operation” [1]. The 

presumption is that there is a mission 

statement, a set of assets with which to 

perform the mission, and an environment 

to operate in that may include an 

opposing force. According to Willard in 

[1], there are several ways in which a 

commander guides an operation. 

• Maintain alignment: The 

commander must ensure that all 

decisions remain aligned with the 

operation’s mission and the 

commander’s intent. 

• Provide situational awareness: 

The commander must assess the 

status of plan execution 

constantly, utilizing a common 

operational picture (COP). 

• Advance the plan: The 

commander must monitor the 

status of plan execution against 

the plan’s timeline. 

• Comply with procedure: The 

commander oversees compliance 

with warfighting procedures to 

avoid mistakes (e.g., friendly fire 

engagements or collateral 

damage) and achieve 

efficiencies. 

• Counter the enemy: The 

commander must be responsive 

to emerging intelligence, 

surveillance, and reconnaissance 

information that differ 

significantly from expectations. 

• Adjust apportionment: Changes 

to asset availability or changes to 

requirements and priorities may 

require reapportionment of 

assets. 

Military organizations are essentially 

complex cyber-physical systems. The 

end –nodes may be aircraft with pilots, 

or aircraft without pilots. These units 

whether manned or unmanned can be 

viewed as autonomous systems that 

cooperate to achieve a mission under the 

command of a human commander.  

The tasks of the military commander are 

also clearly analogous to what would be 

required in many non-military systems. 

The only difference may be that no 

enemy exists, but the environment is 

nevertheless capable of surprising, 

therefore emerging information that can 

alter assumptions is still possible. Units 

may become inoperable just as in 

military operations, and adjustments to 

plans must often be made. 

As the complexity of the system 

increases, the commander must work at 

higher, more abstract levels. The units of 

the system must also exhibit higher 

levels of autonomy so that decision 
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making is moved further down and is 

more immediate [2]. Based on the level 

of autonomy exhibited by the units, we 

can model the size of an operation that a 

single person can manage, provided the 

situation can be adequately described to 

the commander. 

Sparse Supervisory Control 

As we invert the ratios from many 

people working to manage a single 

unmanned air vehicle to a single person 

managing a team of heterogeneous AUS, 

we must move from direct control to 

supervisory control. In order to highlight 

the fact that with many vehicles to 

manage, the human must spend very 

little time on each, we call the mode we 

envision as sparse supervisory control.  

Human Management of 

Automation. 
Automation can easily be called 

ubiquitous.  We interface with it daily, 

even if we do not immediately recognize 

it. In years past for example, elevators 

required human operators, but now we 

simply press a button to reach our floor.  

Even highly complex systems integrate 

automation; commercially flown 

airplanes have autopilots that are capable 

of landing the plane, and some models of 

cars have automated systems which 

bypass the driver if safety is in doubt 

(i.e., automatic braking systems, vehicle 

headway monitoring). The latest 

innovations in self-driving cars take 

autonomy even further. These systems 

integrate automation, but still rely 

heavily on a human component for 

routine performance and supervision.  

While automation is becoming more 

common, and more reliable, it rarely 

replaces or removes a human with 

experience from the overall task [3]. 

Automation has also been shown to 

result in phenomena such as 

complacency which results in operators 

failing to detect failures of automated 

systems [4,5,6] and automation bias, 

which results in operators blindly 

following automation recommendations 

or failing to act unless the automation 

requests the human action in decision 

making systems [7,8,9,10,11]. 

Leli and Filskov [12] suggest that it is 

specifically the integration that plays a 

large role in determining the 

effectiveness of a system outcome.  In 

their work, automated diagnostic 

systems consistently outperformed 

clinicians when in isolation; however 

decision accuracy decreased as a direct 

result of integrated clinician application 

of the aid to diagnose psychological 

conditions. This result suggests that 

perhaps the most critical aspect of 

automation is not the engineering behind 

the automation itself, but the interaction 

between any automation and the 

operator who is expected to work 

together with it.   

Parasuraman and Wickens [3] also 

identified issues related to the ability of 

human operators to understand the 

actions of the automation. The operators 

trust and ability to evaluate the 

performance of autonomous systems 

comes, in part, from an ability to 

recognize behaviors as correct or 

incorrect. AUS that have been 

programmed to perform in a particular 

fashion may or may not exhibit 

behaviors that are recognizably correct 

while optimal for the given situation. 

Knowing that such situations can exist 

may also push an operator to show 

complacency when observing odd 

behaviors because they can be explained 

as possibly correct if not humanlike. 
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It bears mention that the pitfalls of 

automation do not suggest that 

automation will always be harmful or 

should be abandoned. The dual nature of 

automation pitfalls and windfalls has 

begun to be explored within unmanned 

systems, with some success in improving 

situational awareness (SA), workload, 

and performance in the case of adaptive 

automation [13]. 

Higher levels of automation also have 

been shown to drive in part the number 

of vehicles a single operator is able to 

control, with higher levels of automation 

increasing that number [14, 15, 16].  

How operators implement team 

strategies and switch between vehicles 

also appears to be influenced by the 

level of automation (Miller & 

Parasuraman, 2007; Parasuraman et al., 

2005; Squire & Parasuraman, 2010 

Achieving Sparse Supervisory 

Control 
Where we previously had one operator 

(or more) manually controlling only one 

AUS we plan to have one operator now 

oversee the workings of several semi or 

fully automated vehicles, changing the 

role to one of supervision and overseeing 

automated functions. 

This role shift is where the control of 

automation merges back with command 

and control in terms of goals and where 

what has been learned about the 

management of automation must be 

applied to succeed in exercising control 

of AUS under command. 

The commander must be able to alter the 

operation to counter decisions by the 

enemy. These changing needs mean that 

the tactics employable by a team of AUS 

must be flexible and robust. The 

environment will rarely look exactly as it 

does to the programmers scripting 

behaviors. In this paper we describe 

initial experiments into the machine 

learning of team tactics. This approach is 

robust to changes in the composition of 

the team in ways that scripted actions are 

not. 

Commanders must be able to 

communicate intent to AUS teams. 

There must be confidence that the teams 

understand this intent and must be able 

to recognize when decisions made by the 

team are out of alignment with that 

intent. In this paper we will discuss one 

approach we propose for aiding in that 

recognition.  

The commander must maintain 

situational awareness of the entire 

environment being operated in by both 

AUS and autonomous human-occupied 

systems (AHOS). This SA must be done 

despite the mismatch of information 

coming from AUS and AHOS. Human 

occupied units will provide information 

differently than will machines directly. 

This information disparity will be a topic 

for another paper. 

Learning Team Tactics 

We present two ideas in developing team 

tactics by machine learning rather than 

programmer scripting. The first 

approach learns through the evolutionary 

development of artificial neural nets that 

take into account the geometry of the 

force and the opposition. By computing 

policy as a function of geometry, 

policies are developed that can adjust to 

changes in force composition and 

changes to threat tactics. The second 

idea employs computer observation of 

human behavior to develop robot actions 

that are recognizable to humans. 
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Developing Robust Tactics 
A common approach to the design of 

autonomous systems is to design the 

entire system to be scripted. That is, a 

human decides on the action the 

autonomy takes for any given state the 

system is in. Such systems face many 

challenges. The first is the significant 

investment in human resources in the 

design because every part of the 

autonomy must be thought out and 

scripted. Furthermore, the autonomous 

capability is dependent upon the 

incorporated knowledge. Therefore, the 

investment of human resources 

necessarily includes subject matter 

experts in the task the autonomy is 

addressing. Another difficulty is that 

scripted autonomy is brittle. Unexpected 

situations can cause the autonomy to 

fail. This lack of robustness is due to the 

expansive state space that exists in the 

real world. Human designers will not be 

able to test or even anticipate every 

situation the autonomous system will be 

exposed to, resulting in a number of 

states that will not be addressed by the 

autonomy or be addressed with limited 

effectiveness. For example, consider a 

scripted autonomous system designed to 

deter piracy that assumes there exists 

only a single pirate threat at any given 

time. Once such autonomy encounters a 

situation where there exists more than 

one pirate, the script will degrade in 

effectiveness because the situation was 

not anticipated. Furthermore, once the 

autonomous system is introduced, 

pirates can adapt their tactics to counter 

the system and render ineffective the 

specific design of the autonomy. Finally, 

scripted systems often lack scalability. In 

particular, the designs will be tied to a 

particular number of autonomous agents, 

or a particular autonomous system, 

meaning each time the number or types 

of unmanned vehicles change, the 

autonomy for the system must be 

redesigned. 

In a proof of concept experiment, such a 

scripted system was compared to a 

cutting edge multiagent learning method 

developed at the University of Central 

Florida (UCF): Multiagent HyperNEAT. 

Multiagent HyperNEAT approaches the 

problem of multiagent learning by 

focusing on the geometric relationships 

among agent policies [17]. The policy 

geometry is the relationship among 

policies located at particular positions 

and the team behavior. Because 

multiagent HyperNEAT is built upon 

HyperNEAT, it can exploit the same 

patterns that HyperNEAT exploits, such 

as regularities. Furthermore, because 

HyperNEAT can encode repetition with 

variation, it can encode agent policies 

that share skills and vary in significant 

ways. Conventional multiagent learning 

cannot capture such regularities to 

enable sharing of skills and variation of 

policy. For a full description of how 

multiagent HyperNEAT encodes a team 

of policies see [17,18]. The main idea is 

to place a whole set of policies within a 

team geometry and compute their 

individual policies as a function of their 

location within the team. 
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Moving from simulated domains to real 

robots will mean that situations may 

occur where the number of agents varies, 

due to malfunctions or replacements and 

therefore ideally team size should be 

dynamically adjustable. The multiagent 

HyperNEAT approach allows such 

scaling because it represents team 

policies indirectly as a function of team 

geometry. Thus new agents can be added 

by simply generating the policy for their 

assigned team position. 

The results of the proof of concept 

experiment are illustrated in the Figure 

1. Overall, the results show that policies 

created by multiagent learning 

approaches are more robust to change. 

The scripted parallel search and learned 

multiagent HyperNEAT policies are 

compared on three variations of a threat 

detection task. In each of the variations, 

the policies are tested over 100 

evaluations and the results averaged. The 

learned policy tested is trained solely on 

the first variation. The first variation is 

the training task for multiagent 

HyperNEAT, in which there are seven 

simulated unmanned vehicles patrolling 

and the threats can randomly appear 

along any of the four edges of the 

operational area. The AUS team is 

tasked with surveillance of the area and 

detecting all threats. The scripted version 

employs a classic lawnmower pattern to 

cover the area. In this task, the learned 

policy has statistically the same 

performance as the scripted policy, 

resulting in the patrols missing 2.37 

threats, and the learned patrol policy 

missing 2.47.  

In the second variation, the tactics 

employed by the threats are altered such 

that they now appear from two of the 

four sides at random, thus increasing the 

Figure 1 Performance of Scripted Search versus Learned Policy 
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density of the attacks along that vector 

and testing the robustness of the 

approaches. The learned policy missed 

3.94 threats, significantly (p < 0.001) 

outperforming the scripted policy, which 

decreased significantly in performance 

to 7.98 threats missed.  

In the third variation, threats can appear 

along all four edges, but the number of 

simulated unmanned vehicles in the 

team is increased from seven to eleven. 

The learned policy exploits the increased 

number of vehicles, decreasing the 

missed threats to 0. However, the 

scripted policy is unable to take 

advantage of the new vehicles and only 

insignificantly decreased missed threats 

to 2.32. These results demonstrate that 

learning can produce more robust and 

scalable policies. 

Recognizing Correct Tactical 

Behavior 
Learning team tactics through 

HyperNEAT will create more robust and 

scalable policies and behaviors. 

However, we must also be concerned 

with whether or not the human controller 

will recognize the behaviors as being 

safe and correct. As the HyperNEAT 

approach produces Artificial Neural Nets 

(ANN), we can only look at the team 

tactics as black boxes, and even within 

the proof of concept experiment, it took 

a fair amount of observation of the units 

to interpret (essentially guess) why they 

were behaving as they did. A human 

controller in such a system however, 

must be able to decide if the tactics 

being employed are aligned to the 

mission and whether or not they are 

properly countering the enemy or 

handling arising complications in the 

environment.  

One of the primary draw backs to 

learning behaviors is that in the search 

for optimal actions the agents can 

behave in ways that seem foreign and 

unintelligible to the human operators. It 

is most likely the case, and something 

that should be tested, that agents that 

behave in a more humanlike fashion are 

more easily trusted by human observers. 

The development of humanlike agents is 

possible through hand coding and expert 

systems, but it is a tedious and 

complicated process. It is, however 

possible to learn humanlike behaviors 

through observation. FALCONET [19], 

also from UCF, is such a system 

designed to create high performance 

humanlike agents through human 

observation. 

Humans learn through several different 

processes. Learning through observation 

entails watching the process as 

performed by some other individual or 

agent. Learning through experience 

involves repetitive practice of the 

process with feedback on performance. 

Learning can and does occur under each 

process individually, but it is the 

combination of observation and 

experience that generally leads to the 

highest levels of performance. For 

instance when learning a new sport 

humans typically observe others already 

proficient in the activity before 

beginning to practice themselves. 

Observation bootstraps the learning 

process of experience enabling faster 

learning speed and higher peak 

performance. 

There is a long history in machine 

learning of borrowing from biological 

systems. Examples include knowledge 

representations like neural networks, 

optimization algorithms such as genetic 

algorithms and ant colony optimization, 
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and learning paradigms like 

reinforcement learning. In the particular 

method discussed below the 

observational-experiential learning cycle 

is replicated in machine learning to 

achieve the same goals for simulated 

learning that are achieved in biological 

learning. 

FALCONET is a method of agent 

training that follows the biologically 

inspired cycle of observation and 

experiential learning. It was designed to 

enable the creation of high performing, 

humanlike agents for real time 

reactionary control systems [19]. 

Typically, the building of humanlike 

agents involves the complicated process 

of interviewing knowledge experts and 

then codifying that knowledge into a 

format that is machine readable. This 

process is complicated and time 

consuming and has led to the slow 

adoption of this technique in real world 

systems, despite the success that can be 

achieved. This problem is known as the 

“knowledge engineering bottleneck” 

[20]. FALCONET was designed to 

automate the agent creation process from 

human observation thereby sidestepping 

the bottleneck. 

Previous work has been done with 

observational data alone to train agents, 

stopping once an acceptable level of 

performance is reached on training and 

validation sets [21,22,23,24,25]. While 

this approach might produce humanlike 

agents, it ignores the possibility that the 

observational agents will perform poorly 

in situations not covered in the 

observational data. The agents when 

presented with novel situations could 

perform in unpredictable and 

unintelligent ways. The experiential 

phase can fill in these gaps by providing 

feedback on the agent’s performance in 

novel situations. 

The training in FALCONET follows a 

two phase training approach. The initial 

phase is a supervised observational 

phase, followed by an unsupervised 

experiential phase. During the 

observational phase the objective of the 

learning is to be similar to the actions of 

a human trainer. Human trainers run 

through the selected tasks starting from 

many different scenarios to generate the 

observational training set. The agents are 

then trained on this data set while being 

graded on how closely they mimic the 

decisions of the human. In the 

experiential phase the agents are trained 

further against a particular  measure of 

performance on the task. In FALCONET 

all training is done by a hybrid genetic 

algorithm (GA) particle swarm 

optimization (PSO) algorithm called 

PIDGION-alternate. This training 

algorithm is an ANN optimization 

technique that generates efficient ANN 

controls from simple environmental 

feedback. FALCONET has been tested 

showing that it can produce agents that 

perform as well or better than 

experiential training alone while 

incorporating humanlike behaviors. The 

results from FALCONET also state that 

unique human operator traits can be 

incorporated and be evident in the final 

highest performance controls, that is to 

say that agents sourced from different 

trainers have slightly different 

behavioral quirks. 

As part of the validation of the 

FALCONET method, experiments were 

conducted with only the experiential 

learning phase. High performance 

controls were created in this manner, but 

they showed several “improper” quirks, 

that while more optimal in the 
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performance metric, seem foreign to 

human operators. These quirks, like 

driving backward or slamming the 

controls left and right very quickly, can 

be programmed out by a human 

designer, but it requires the a priori 

knowledge of all “improper” behaviors 

that would be undesirable. The 

FALCONET method bypasses this need 

by bootstrapping the process with human 

training. 

Autonomic Control 

So far, we have discussed the basic 

needs that will allow a human 

commander/controller to exercise 

command and control over a network of 

autonomous units that include highly 

autonomous unmanned systems (AUS). 

We have recognized that the controller 

must be able to develop adequate 

situational awareness of the 

environment, any enemies, and the 

behaviors and status of assets available. 

This SA requires the commander to 

recognize the behaviors being displayed 

as aligned with the mission, 

commander’s intent, and applicable 

procedures. It also requires that these 

behaviors be robust to the variation 

found in the environment. 

We have also recognized that the human 

controller is subject to many difficulties 

inherent to managing automation. 

Humans are prone to complacency and 

automation bias. They also can only 

work at human speeds and can only 

handle a finite level of complex 

information. Abstraction and supervisory 

control are therefore essential to success 

if many rapid decisions will need to be 

made in controlling the network. 

We are beginning to model AUS teams 

utilizing the Rainbow Framework [26] 

from Carnegie Mellon University. 

Rainbow groups commands into tactics 

and strategies and directs the system 

with those instead of individual actions.  

This approach allows an automated 

controller to move the system out of 

local maximums that it may encounter in 

utility functions.  Additionally, the 

grouping of actions into tactics and 

strategies allows for the system to 

leverage learning techniques and 

previous human experience in dealing 

with situations.  

Rainbow will provide an autonomic 

command and control in the sense that it 

assists with the same set of six tasks, 

only faster. 

Maintain alignment: The mission goals 

and the commander’s intent will be 

modeled as a set of utility functions 

within Rainbow. Rainbow evaluates 

current readings from probes and gauges 

as well as tactics for changing the 

resource allocations against these utility 

functions to select an action. 

Provide situational awareness: 

Rainbow’s framework of probes and 

gauges provides situational awareness 

into how well the current plan is meeting 

mission goals.  

Advance the plan: The autonomic 

systems is continuously evaluating the 

readings from the probes and gauges 

against the plan and makes changes to 

adjust in the event that desired goals are 

not being met. 

Comply with procedure: Procedural 

guidelines can be coded in the tactics 

employed by Rainbow in the stitch 
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language. It is our intention to also link 

tactical procedures to learned behaviors. 

Counter the enemy: As the environment 

or enemy actions impinge on success of 

the goal, Rainbow adjusts the operation 

based on evaluating tactics against the 

likelihood of success. The evaluation 

processes will need to be robust enough 

to estimate how the changes will effect 

operations. 

Adjust apportionment: The basic types 

of tactics employed in Rainbow to date 

have been apportionment decisions. In 

[22] experiments were done on video 

teleconferencing services where 

additional servers were brought online to 

solve problems that occurred during 

operations. 

In the application of Rainbow, AUS 

teams are represented in a similar 

fashion as a network of servers would 

be. However, we include probes into the 

physical world providing information 

both on the AUS and on the 

environment. Many of these probes 

relate directly to the sensors that are 

onboard typical AUS. Strategy decisions 

involving costs include physical costs of 

fuel as well as risks found only in 

systems that interact with the physical 

world. Likewise, rewards are based on 

the ability of the AUS to effect a positive 

change on the environment, often in the 

form of achieving a probability of 

detection of other physical entities in a 

portion of the environment. 

We have developed an initial proof of 

concept in autonomic control of 

unmanned systems by applying the 

Rainbow Framework to a simulated 

domain.  In this domain, a number of 

AUS must maximize the probability of 

detection, P(d),  in an environment by 

maximizing sensor coverage across the 

area.  In this case, P(d) is a simple 

metric defined as the fraction of 

horizontal and vertical paths across the 

space that do not have sensor coverage 

across them,  i.e. straight paths that can 

be traversed without detection.  Thus 

each AUS has a location (x,y-

coordinate) and sensor range along with 

other parameters.  Because AUS are 

conceptually similar to computational 

services (e.g. servers), they can be 

similarly modeled in the Acme 

architecture model language that defines 

a system architecture in the Rainbow 

Framework. 

Properties, such as the geographic 

location and fuel state, represent values 

that are probed from the (simulated) 

world.  Such values inform the Rainbow 

model manger, allowing it to accurately 

reflect and gauge the real system within 

the Rainbow defined model. 

A key feature of Rainbow is the 

definition of constraints that the system 

must follow.  For example, a web 

business may desire the minimization of 

response time for its customers and 

define a constraint that the response time 

experienced by any customer if below 

some threshold. In turn, Rainbow would 

probe these response time values from 

the real system and then evaluate the 

model for constraint violations.  If a 

constraint is violated, Rainbow adapts 

the model through predefined strategies 

and then executes these strategies on the 

real system through effectors. In this 

proof of concept, the constraint is that 

the value P(d) must be above a given 

threshold of 0.8.  To satisfy this 

constraint, Rainbow implements a 

simple strategy. If an overlap in sensor 

coverage exists, move the active AUS to 

minimize the overlapping coverage.  If 
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there is no overlap, but the constraint is 

still violated, then add a new AUS to the 

domain.  This strategy implements two 

tactics that we described in stitch: move 

and enlistAUS. 

In the enlistAUS tactic, the condition 

first checks whether the constraint is 

violated and then if there are any AUS 

not currently active.  If both these 

conditions are satisfied, a random free 

AUS is chosen and activated.  The effect 

being that the addition of the new AUS 

increases the sensor coverage, thus 

improving P(d) over the current levels. 

In the domain, the AUS exist in a two-

dimensional plane with coordinate 

values in the range [0,1].  Initially, no 

AUS are active, thus the constraint is 

violated at the start.  This compels 

Rainbow to adapt the system with the 

above strategies and tactics to achieve 

the pre-determined desired P(d) level.  

When each AUS is activated, they are 

placed at location (0,0) and then move 

from there.  Each AUS moves at the 

same fixed speed of 0.01, have a sensor 

range of 0.1, and begin with 100% fuel. 

Results demonstrate that Rainbow can 

be implemented to effectively control 

such systems.  Figure 2 shows that the 

system begins at a low P(d), indicative 

of the initial state of the system.  

However, by time step 150, Rainbow has 

successfully adapted the system to 

achieve the desired P(d) value. 

 

Figure 2 Probability of Detection in Proof-of-

concept experiment 

Not only is the result interesting, but the 

behavior of the system is as well. Figure 

3 shows the final configuration of the 

system, when it achieves the P(d) 

threshold required. Each circle 

represents an AUS sensor coverage. 

Through the composition of simple 

strategies and tactics, organization 

emerges that effectively minimizes the 

probability of anyone passing through 

the region undetected. In this simulation, 

utility of the system is equal to the 

probability of detection.  However, 

Rainbow includes the capability to 

calculate system utility as a function of 

multiple variables.  For example, 

maintaining sensor coverage may be 

only one important aspect; another may 

be reducing fuel consumption or 

minimizing the AUS required.  Rainbow 

weights each of these contributions of 

utility to determine the overall utility of 

the system.  Through these relative 

weightings, different aspects can be 

emphasized. A suite of strategies to 

address these differing concerns may be 

required, forming a pareto-front of 

performance depending on particular 

user needs. 
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The ability of Rainbow to automatically 

and quickly implement strategies frees 

up the controller to focus on macro level 

concerns, such as overall probability of 

detection, fuel levels, and costs, rather 

than micro-managing individual AUS.  

Thus the controller can make decisions 

about required detection levels versus 

preferred fuel levels and leave it up to 

Rainbow and its strategies to implement 

the decisions. Many avenues remain for 

exploration in the Rainbow Framework 

including, but not limited to, 

performance with “human-in-the-loop” 

changing the system constraints and 

goals, integrating machine learning into 

tactics and strategies, extending 

Rainbow to be able to dynamically 

acquire system architecture, and 

evaluating robustness to failures in the 

system, such as an AUS malfunctioning, 

being destroyed, running out of fuel, or 

being reassigned. 

Conclusions 

We have both found and produced, 

proof-of-concept level experiments that 

demonstrate possible solutions to some 

of the challenges we perceive for the 

successful command and control of 

teams that include AUS. Our goal is to 

continue to pursue these possible 

solutions. 

The command and control of teams 

requires that commanders be able to 

work at a suitable level of abstraction. 

Commanders must be able to recognize 

when changes to a plan are required and 

must have the ability to affect such a 

change. The dynamic nature of the 
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military environment indicates the need 

for robust adaptable capabilities for 

decision making in the individual AUS, 

but also the ability for their actions to be 

recognizable to human controllers. 

Autonomic capabilities are a likely 

approach to allow commanders to handle 

very large teams that may require rapid 

decision making, but the autonomic 

strategies must also be made more 

adaptable and in doing so also maintain 

the property of being recognizable by a 

commander. 
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Autonomy and Command and Control (C2): 
Definitions for Our Purposes

 A mobile robot is comprised 
of sensors, autonomy 
algorithms and actuators

 Autonomy is therefore the 
decision making based on 
the task and the robot’s 
model of the environment. 

 Cooperative Autonomy is 
the ability of a group of AUS 
to collaboratively make task 
assignments and interpret 
and execute the intent of 
the system operator 
[Brizzolara 2011] 

Autonomy: Mobile robots, 
including autonomous 
vehicles, can be characterized 
by three tasks they perform –
sense the environment around 
them; make a decision based 
on a predefined task  and the 
environment it senses; and 
finally act in order to perform 
the predefined task by 
adapting to its environment 
[IEEE-Robotics 101]. 
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Autonomy and C2: Definitions for Our 
Purposes

▼ Maintain alignment: The commander must ensure 
that all decisions remain aligned with the operation’s 
mission and the commander’s intent.

▼ Provide situational awareness: The commander must 
assess the status of plan execution constantly, 
utilizing a common operational picture (COP). 

▼ Advance the plan: The commander must monitor the 
status of plan execution against the plan’s timeline.

▼ Comply with procedure: The commander oversees 
compliance with warfighting procedures to avoid 
mistakes (e.g., blue-on-blue engagements or 
collateral damage) and achieve efficiencies.

▼ Counter the enemy: The commander must be 
responsive to emerging intelligence, surveillance, 
and reconnaissance information that differ 
significantly from expectations. 

▼ Adjust apportionment: Changes to asset availability 
or changes to requirements and priorities may 
require reapportionment of assets.

“Command is the doctrinal 
assignment of authority”. 
One must possess a 
measure of command in 
order to exert control, 
which is defined as 
“…guiding the operation”. 
Control of forces can be 
described through the 
following contributions that 
a commander may make 
to an operation [ADM 
Willard 2002]
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Requirements for C2 of AUS

▼ Communicate task and commander’s intent to AUS. Commander 
must have confidence that AUS can accomplish mission and that all 
tasks and constraints are understood.
 Vocabulary of tactics
 Adapt to new tactics and constraints efficiently and effectively
 Seamlessly adjust to team composition and geometry

▼ Maintain SA at appropriate level of abstraction
 Ability to control multiple AUS in dynamic team arrangements
 Recognize the difference between correct and aberrant behaviors relative to 

tasks and constraints provided. When must new tasking be given.
 Recognize opportunities and requirements for changes to resource 

apportionment.
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Sparse Supervisory Control

 1 human operator controlling many (20-30+) AUS 
 ‘inverting’ the ratio

 Operator role now becoming supervisory:
− issue orders & supervise:  versus manually direct, 

navigate, survey, investigate, etc.
− occasionally intervene:  approve/disapprove of 

actions, change action/goals
− In general; monitoring the actions of the AUS, 

stepping in when necessary
 Situation awareness important for both operator and 

AUS
 Human recognition of proper or aberrant behavior by 

the AUS
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Situational Awareness and Operator Load

Rodas, et. al 2011

A bstract-The Department of Defense's future vision for 
Xetwork Centric Operations (N CO) will increase combat 
po·wer by networking relevant entities across the 
battlefield. This will result in higbly complex mission 
scenarios in which the operator's workload will be easily 
overloaded if the system is not designed to support the 
mission 1·equirements. Kew technologies fo1· these complex 
command and control environments are currently being 
developed. Evaluating the adequacy of a particular 
technology fo1· specific mission requirements is critical for 
military decision makers. This paper will introcluce a new 
approach to model operator and system performance. 
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Scripted Tactics vs Multi-Agent HyperNEAT

Mode Agents Simulation Evolution Help 

• [J / . . L..! 

Elapsed time: 251.664149999996 

Fitness: 7.06149103:3r:4···L --------------------. 



8

Experiments with HyperNEAT

Note: There were 
0 missed threats 

for this case.
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Human Recognition of Behavior

[Stein 2009]
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AUS C2 Enhanced by Rainbow

Cheng, Garlan, and Schmerl, “Making Self-Adaptation an Engineering Reality”, In Self-Star Properties in Complex Information 
Systems, Springer-Verlag, 2005
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Emergent Behavior Using Rainbow
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Implications for Cyber-Physical Systems

▼ Large Complex CPS result in “Human On-the-Loop” rather 
than “in-the-loop”. 
 Sparse Supervisory Control
 Command and Control

▼ We are likely to require the use of machine learning. 
 Adaptation == under-specification
 Trust comes from experimentation and observation. Is that 

enough in a safety critical application.
 How will techniques of proving properties of composed systems of 

black-boxes work when the boxes adapt and affect each other.
▼ Observation of machine optimized policies. 
 AUS teams are composed and will exhibit cooperative autonomy
 Commanders need to understand when to step in
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